

How to enable interregional heat exchange?

Review and analysis of best practice examples

2nd NEFI Conference, 13-14 October 2022; Linz, Austria

Nicolas Marx, Stefan Reuter, Ralf-Roman Schmidt

BACKGROUND HEAT HIGHWAY

MAIN GOALS

- Develop a multi-level toolbox for optimizing the operation and implementation of heat transmission networks.
- Anticipate industrial waste heat potentials from current and breakthrough (decarbonized) processes.
- Develop a prototype of a cost-effective pipe system to significantly reduce investment costs.
- Setting up a 3D simulation based "virtual demonstrator" for showcasing the feasibility despite high complexity.

KEY FACTS

Expected duration: 03/21 - 02/24

Project volume: € 2,500,000

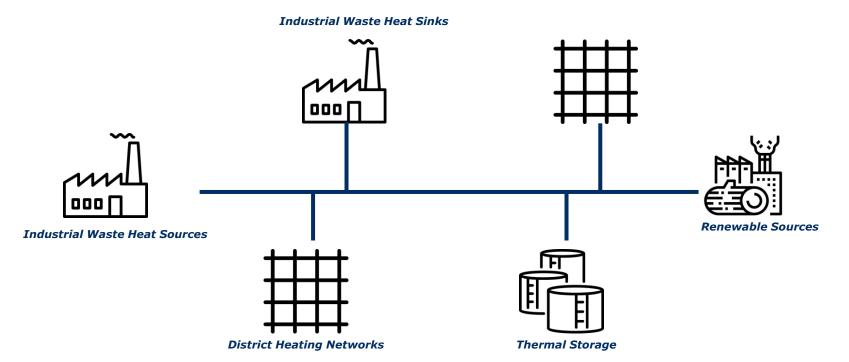


image: Flaticon.com'. This cover has been designed using resources from Flaticon.com

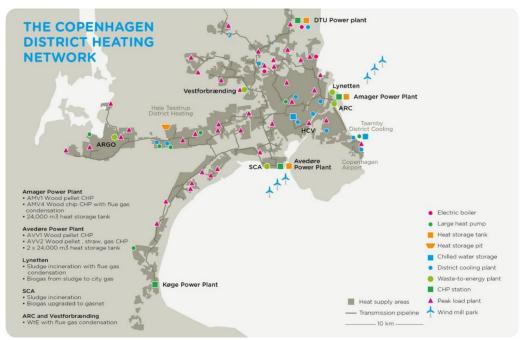
DEFINITIONHEAT TRANSMISSION NETWORKS

BEST PRACTISE EXAMPLES*

- Long heat transmission network
- Heat transmission pipe
 Unidirectional transport
 (one source/one sink)

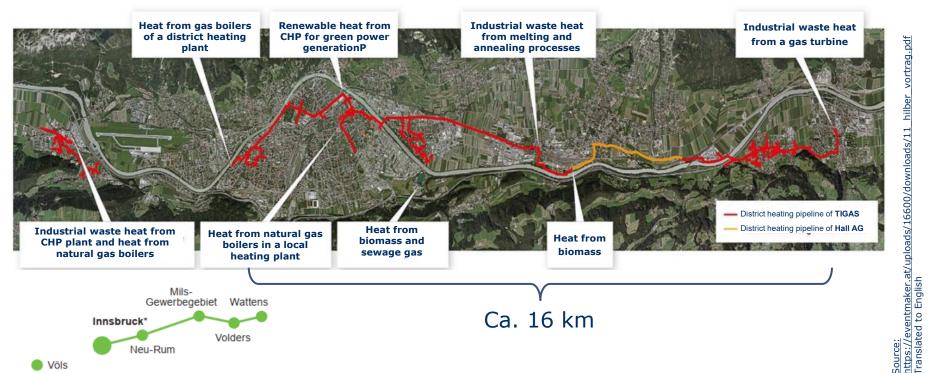
*Non-exhaustive list

Source: Google - MyMaps

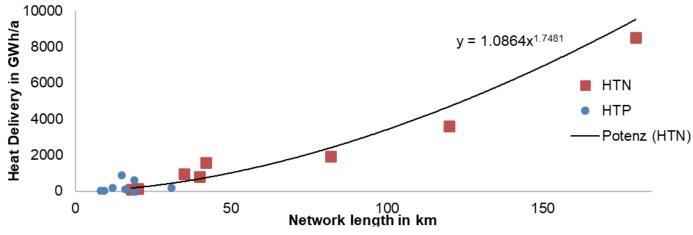

EXAMPLEGREATER COPENHAGEN DHN

- 180 km transmission network
- 3 operators
- 21 connected DHN
- Heat supply: ~ 8500 GWh/a
 - Biomass CHP
 - Waste incineration
 - Peak load boiler
 - Industrial waste heat
 - Thermal storages
- Targets

https://dbdh.dk/wp-


- CO2-neutral by 2025
- Realization of 4GDH

NEW ENERGY FOR INDUSTRY AUSTRIAN, INSTITUTE


EXAMPLEINNSBRUCK – WATTENS

with Partner IKB

QUANTITATIVE ANALYSIS

Parameter	Average	HTN	НТР
Distance in km	32	62	22
Capacity in MW _{th}	221	482	164
Heat delivery in GWh _{th} /a	1422	2302	264
Specific investment cost in €/m	725	816	699
Linear power density in MW/km	8.8	11	8.4
Linear heat density in MWh/m×a	21	24	16

QUALITATIVE ANALYSIS*

Strengths

- Optimal integration of regionally available heat sources
- Heat delivery to remote customers
- Reduced dependencies, increased system resilience

Opportunities

- Suitable land for (seasonal) heat storage
- Establishment of heat market
- Increased large-scale utilization of alternative heat sources

Weaknesses

- High CAPEX
- High complexity
- High system inertia (e.g. temperature changes)

Threats

- Challenging investment decisions
- Utilization rates as a key parameter may vary greatly

^{*}Only key aspects are shown

CONCLUSION AND NEXT STEPS

- HTNs can
 - …include seasonal storages, backup boilers…
 - ...reduce supply risks
 - …lead to price stability
- Interest in HTN is increasing
 - Rising gas prices
 - Best-practise examples
- Further investigation the case study "Inn Valley"*

Thank you for your attention!

DI Nicolas Marx

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria T +43(0) 50550-6695 | M +43(0) 664 235 19 01 | F +43(0) 50550-6679 nicolas.marx@ait.ac.at | http://www.ait.ac.at

